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Development

One-dimensional quantities

▪ Real numbers

▪ Continuous straight line

Higher dimensions

▪ Distances to landmarks

▪ Non-linear (hard to calculate)

▪ Cartesian coordinates

▪ Projection on coordinate axes

▪ Linear structure

▪ Convenient & fully understood
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Vectors



Vectors

Geometry:
vectors are arrows in space

Algebra:
arrays of numbers

𝐱 =

𝑥1
𝑥2
𝑥3



Vector Addition

x

y

x + y

Adding Vectors:
Concatenation

Algebra:
adding numbers

𝐱 + 𝐲 =

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3



Structure: Abelian Group



Group

Group Axioms

▪ Closed: Set 𝐺, closed operation “ ∘ ”: 𝐺, 𝐺 → 𝐺

▪ Associative: 𝑔1 ∘ 𝑔2 ∘ 𝑔3 = 𝑔1 ∘ 𝑔2 ∘ 𝑔3

▪ There is a neutral element 𝑖𝑑 ∈ 𝐺: 𝑖𝑑 ∘ 𝑔 = 𝑔 ∘ 𝑖𝑑 = 𝑔

▪ For each 𝑔 ∈ 𝐺 there is an inverse 𝑔−1 ∈ 𝐺:
𝑔 ∘ 𝑔−1 = 𝑔−1 ∘ 𝑔 = 𝑖𝑑

group

template <set T, operator ○>

T operator”○”(T, T)

Axioms: closed operation, associative, neutral element, inverse
function ○

C++ pseudo-code: schematic:



What do the axioms mean?

closed operation

all operations always possible

∀𝑎, 𝑏 ∈ 𝐺: 𝑎 ∘ 𝑏 ∈ 𝐺

a

b1

b2

b3



What do the axioms mean?

Neutral element

(unique) null operation

∀𝑎 ∈ 𝐺: 𝑎 ∘ 𝑖𝑑 = 𝑎

a
id

Inverse

all operations reversible

∀𝑎 ∈ 𝐺: 𝑎 ∘ 𝑎−1 = 𝑖𝑑

no information loss!

a

a-1



What do the axioms mean?

associativity

effect “adds up”: operations can be 
summarized / grouped together 

consistently

∀𝑎, 𝑏, 𝑐 ∈ 𝐺: ( 𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐)

a

b c

( 𝑎 ∘ 𝑏)

(𝑏 ∘ 𝑐)



What do the axioms mean?

commutativity

intuition: grid / flat structure

∀𝑎, 𝑏 ∈ 𝐺: 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎

a

b

a
b



Euclidean Space is not Curved

b

a a

b

vector space
(Euclidean geometry)

not a vector
space

a

b

a
b

(Generalization: Manifold)



Beyond Middle-World

http://en.wikipedia.org/wiki/Gravity_Probe_B

[NASA] [NASA]



Back to the Vectors...



Vector Operations

𝟏

𝟐
⋅ 𝐯

scaling vectors

𝐯

𝟐 ⋅ 𝐯

adding vectors

𝐯

𝐰

𝐯 + 𝐰

vector-scalar product
𝜆 ⋅ 𝐯 (𝜆 ∈ ℝ, 𝐯 ∈ 𝑉)

vector-addition 
𝐯 + 𝐰 (𝐯,𝐰 ∈ 𝑉)



Structure: Vector Space



Vector Spaces

Vector space:

▪ Set of vectors V

▪ Based on field F (usually F = ℝ)

▪ Two operations:

▪ Adding vectors u = v + w (u, v, w  V)

▪ Scaling vectors w = v (u  V,   F)



Vector Spaces

Vector space axioms:

▪ Vector addition – Abelian group:

▪ ∀𝐮, 𝐯,𝐰 ∈ V: 𝐮 + 𝐯 +𝐰 = 𝐮 + 𝐯 +𝐰

▪ ∀𝐮, 𝐯 ∈ V: 𝐮 + 𝐯 = 𝐯 + 𝐮

▪ ∃𝟎 ∈ V: ∀𝐯 ∈ V: 𝐯 + 𝟎 = 𝐯

▪ ∀𝐯 ∈ V: ∃"−v" ∈ V: v +(−v) = 𝟎

▪ Compatibility with scalar multiplication:

▪ ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ F: 𝜆 𝜇𝐯 = 𝜆𝜇 𝐯

▪ ∀𝐯 ∈ V: 1 ⋅ 𝐯 = 𝐯

▪ ∀𝐯,𝐰 ∈ V, 𝜆 ∈ F: 𝜆(𝐯 + 𝐰) = 𝜆𝐯 + 𝜆𝐰

▪ ∀𝐯 ∈ V, 𝜆, 𝜇 ∈ F: 𝜆 + 𝜇 𝐯 = 𝜆𝐯 + 𝜇v



You can combine it...

v

Linear Combinations:
This is basically all you can do.

w

2w + v

𝐲 =෍

𝑖=1

𝑛

λ𝑖𝐱
𝑖

Algebraically



Notions & Theorems

Definitions (look it up)

▪ Span (span{𝐱, 𝐲, 𝐳}) – set of linear combinations

▪ Generating set – set of vectors that span the space

▪ Basis – minimal set of vectors that span the space

▪ Dimension – cardinality of basis

Theorems (look it up)

▪ Every vector space has a basis, cardinality is fixed

▪ Every finite 𝑑-dimensional vector space
is isomorphic to 𝐹𝑑

▪ Proof: Take coordinates in basis, stack up in a vector



Function Spaces



Vector Spaces

Function spaces:

▪ Space of all functions 𝑓:ℝ → ℝ

▪ Space of all functions 𝑓: 0,1 2 → ℝ3

▪ etc...

0 1 0 1 0 1

+ =



Operations

Adding / Multiplying Functions?

▪ 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔(𝑥)

▪ 𝜆𝑓 𝑥 = 𝜆𝑓 𝑥

Closed operations?

▪ Vector spaces:

▪ 𝑉𝑎 = 𝑓: 0,1 → ℝ 𝑓 continuous}

▪ 𝑉𝑏 = 𝑓: 0,1 → ℝ 𝑓 differentiable}

▪ 𝑉𝑐 = 𝑓: 0,1 → ℝ 𝑓 2nd order polynomial }

▪ Not a vector space:

▪ 𝑉𝑑 = {𝑓: 0,1 → ℝ>0}



Function Spaces

Intuition:

▪ Start with a finite dimensional vector

▪ Increase sampling density towards infinity

▪ Real numbers: uncountable amount of dimensions

0 1 0 1 0 1
dim = 9 dim = 18 dim = 

[f1, f2, ..., f9] [f1, f2, ..., f18] f (x)



Example: Image spaces



Example: Image spaces

Images

▪ Vacation photos

▪ 4000 x 3000 pixel
(12 MPixel)

▪ RGB images

▪ 3 numbers per pixel

▪ 3 × 12M = 36,000,000 
dimensions

▪ High-dimensional 
vector space𝐢𝐦𝐠 =

𝑟1
𝑔1
𝑏1
𝑟2
⋮
𝑏𝑑

𝐢𝐦𝐠 =

𝑟1
𝑔1
𝑏1
𝑟2
⋮
𝑏𝑑



Shape Spaces

Examples for Linear Shape Spaces

▪ “Morphable Face Model”
Volker Blanz & Thomas Vetter
ACMSiggraph 1999

▪ https://www.youtube.com/watch?v=jkz-IlIJrig



Back to Generic Function 
Spaces…



Function Spaces

Intuition:

▪ Start with a finite dimensional vector

▪ Increase sampling density towards infinity

▪ Real numbers: uncountable amount of dimensions

0 1 0 1 0 1
dim = 9 dim = 18 dim = 

[f1, f2, ..., f9] [f1, f2, ..., f18] f (x)



Intuition

Analogy: Think of functions as array of numbers

▪ Also helps understanding derivatives, integrals, …

▪ Subtle differences (pure math lectures)

𝑓(𝑥)

𝑥

Function f

𝑓(𝑥)

Think of this:

array of numbers

𝑥

spooky, uncountably-infinite thing



More Tools: 
Angles & Length



Scalar Product

Scalar Product*)

𝐯 ⋅ 𝐰 = 𝐯 ⋅ 𝐰 ⋅ cos∠(𝐯,𝐰)

*) also known as inner product
or dot-product 

also: 𝐯,𝐰

90°

𝐯

𝐰



Scalar*) Product

x
y

Scalar*) Product:
measuring angles & length

Algebra:
sum up component product

𝐱 ⋅ 𝐲 =

𝑥1
𝑥2
𝑥3

⋅

𝑦1
𝑦2
𝑦3

= 𝑥1 ⋅ 𝑦1 + 𝑥2 ⋅ 𝑦2 + 𝑥3 ⋅ 𝑦3
𝐱 ⋅ 𝐲 = 𝐱 ⋅ 𝐲 ⋅ cos α

𝛼 = ∠ 𝐱, 𝐲

𝛼

*) also known as: dot product, inner product



Scalar Product on Function Spaces

Scalar products

▪ For suitable*) functions

𝑓, 𝑔: Ω ⊂ ℝ → ℝ

the standard scalar product is defined as:

𝑓 ⋅ 𝑔 = 𝑓, 𝑔 ≔ න
Ω

𝑓 𝑥 ⋅ 𝑔 𝑥 𝑑𝑥

▪ Measures an norm and angle in an abstract sense

*) square-integrable



Orthogonal Function

Orthogonal functions

▪ Do not influence each other in linear combinations.

▪ Adding one to the other does not change the value in 
the other ones direction.

𝑓 𝑔
𝑓

𝑔

𝑓, 𝑔 = 0



Abstract Scalar Product

Abstract scalar product

⋅ , .⋅ : 𝑉 × 𝑉 → 𝐹

Scalar product axioms:
∀𝐱, 𝐲, 𝐳 ∈ 𝑉, 𝜆 ∈ 𝐹:

▪ Symmetry: 𝐱, 𝐲 = 𝐲, 𝐱

▪ Linearity: 𝜆𝐱, 𝐲 = 𝜆 𝐱, 𝐲
𝐱 + 𝐲, 𝐳 = 𝐱, 𝐳 + 𝐲, 𝐳

▪ Positive-definiteness: 𝐱, 𝐱 ≥ 0,
𝐱, 𝐱 = 0 ⇔ 𝐱 = 𝟎

V is an (abstract) vector space,
F is a field (we always use ℝ!)



In Practice…

Finite-dimensional vector spaces

𝐱, 𝐲 ∈ ℝ𝑑

𝐱, 𝐲 = 𝐱T 𝐌 𝐲

For a symmetric, positive-definite matrix 𝐌

▪ More on matrices later…

Special case: diagonal matrix

▪ Function spaces: 

𝑓, 𝑔 ≔ න
Ω

𝑓 𝑥 ⋅ 𝑔 𝑥 ⋅ 𝜔 𝑥 𝑑𝑥 , 𝜔 𝑥 > 0



Bases for function spaces



Basis

Examples: bases for function spaces

▪ Finite dimensional case

▪ Polynomials of degree k

▪ B-Spline functions over fixed intervals (details soon)

▪ Countably infinite

▪ Set of all polynomials

▪ Every linear combination is finite

▪ Uncountably infinite

▪ Set of smooth functions (e.g., 𝐶0, 𝐶1, … 𝐶∞)

▪ Set of square integrable functions (𝐿2)

▪ Hard to construct a basis 



Schauder Basis

Schauder Basis

▪ Series representation of vectors

▪ Important for function spaces

Definition: Schauder-Basis of 𝑉

▪ Sequence of basis vectors 𝐛1, 𝐛2, … ∈ 𝑉

▪ For every 𝐯 ∈ 𝑉, there is a unique sequence λ1, λ2, … ∈ 𝐹
such that

lim
𝑛→∞

𝐯 −෍

𝑖=1

𝑛

λ𝑖𝐛𝑖 = 0



Schauder Basis

Function spaces 𝐿𝑝:

▪ 𝑓, 𝑔 ≔ ׬
Ω
𝑓 𝑥 𝑔 𝑥 𝑑𝑥 , 𝑓 2 ≔ 𝑓, 𝑓

▪ 𝐿2 space of square-integrable functions: Integral exists

▪ Analogous 𝐿𝑝: 

𝑓 𝑝 ≔ න
Ω

𝑓 𝑥 𝑝𝑑𝑥

1
𝑝



Schauder Basis

Schauder-Bases for 𝐿𝑝

▪ Fourier basis with Ω = [0,2𝜋)

𝐵 =
1
2

2 sin 2𝜋𝑘𝑥 ,
1
2

2 cos 2𝜋𝑘𝑥 𝑘 ∈ ℕ

▪ Haar basis for fixed intervals

Sequence space as substitute

▪ 𝑙2 with norm 𝜆1, 𝜆2, …
𝑇 ≔ 𝜆1

2 + 𝜆2
2 +⋯

▪ 𝐿2 on 0,2𝜋

▪ 𝐿2 can be approximated (to arbitrary precision) with 𝑙2

(excluding k=0 here)



“Standard” Setting

We usually consider the Hilbert Space L2

Hilbert space

▪ Scalar product 𝑓, 𝑔

▪ Norm 𝑓 ≔ 𝑓, 𝑓

▪ Complete space (convergent “Cauchy” series do have a limit)



“Standard” Setting

We usually consider the Hilbert Space L2

Space 𝐿2

▪ Functions 𝑓: Ω → ℝ with domain Ω ⊆ ℝ𝑑 ,
square integrable ( 𝑓, 𝑔 exists for all 𝑓, 𝑔 ∈ 𝐿2)

▪ (Lesbeque integral)

▪ For Ω = 0,2𝜋 𝑑 , the Fourier-Basis is a suitable 
Schauder-Basis

▪ Isometry between 𝐿2 and ℓ2 (= square-summable 
sequences, with standard scalar product w/infinite sum)

𝑓, 𝑔 ≔ න
Ω

𝑓 𝑥 ⋅ 𝑔 𝑥 𝑑𝑥



“Standard” Setting

Really?

If we perform numerical computations

▪ We just use a finite-dimensional representation

▪ An array is a good starting point

Let’s look at this in more detail…

…in one of the later sections!


